The generalized Kupershmidt deformation for
integrable bi-Hamiltonian systems

Yugin Yao

Tsinghua University, Beijing, China
(with Yunbo Zeng)

July, 2009



catalogue

Introduction

KdV6 equation

The generalized Kupershmidt deformed KdV hierarchy

The generalized Kupershmidt deformed Camassa-Holm equation

The generalized Kupershmidt deformed Boussinesq equation



Introduction

It is an effective approach to construct a new integrable system
starting from a bi-Hamiltonian system.

m Fuchssteiner and Fokas (1981) showed that compatible
symplectic structures lead to hereditary symmetries, which
provides a method to construct a hierarchy of exactly solvable
evolution equations.

m Olver and Rosenau(1996) demonstrated that most integrable
bi-Hamiltonian systems are governed by a compatible trio of
Hamiltonian structures, and their recombination leads to
integrable hierarchies of nonlinear equations.

m Kupershmidt (2008) proposed the Kupershmidt deformation
of the bi-Hamiltonian systems.



KdV6 equation

Recently, KdV6 equation attract more attentions. Karasu-Kalkani
et al applied the Painleve analysis to the class of 6th-order
nonlinear wave equation and they have found 4 cases that pass the
Painleve test. Three of these were previously known, but the 4th
one turned out to be new

(8)3: + 8ux Oy + 4t ) (Ut + Ussxe + 6u)2() = 0. (1)

This equation, as it stands, does not belong to any recognizable
theory. In the variables v = uy, W = uz + g + 602, (1) is
converted to

Vi + Vieor + 12vvy — wy = 0, (2a)
Wik + 8vwy + 4wy, = 0, (2b)

which is referred as KdV6 equation.



KdV6 equation

m The authors found Lax pair and an auto-Backlund
transformation for KdV6 equation, but they were unable to
find higher symmetries and asked if higher conserved densities
and a Hamiltonian formalism exist for KdV6 equation.

m Kundu A, Sahadevan R et al show that KdV6 equation
possess infinitely many generalized symmetries, conserved
quantities and a recursion operator.

m Kupershmidt described KdV6 equation as a nonholonomic
perturbations of bi-Hamiltonian systems. By rescaling v and t
in (2), one gets

Up = BUU, + Usex — Wy, (32)
Wik + 4uwy + 2wuy = 0, (3b)



KdV6 equation

which can be converted into

5H
ve = Bi(5,”) = Bi(w), (42)
By(w) =0, (4b)

where
By =9 =0y, By=09%4+2(ud + du) (5)

are the two standard Hamiltonian operators of the KdV hierarchy

and H3 = v — “75 (4) is called the Kupershmidt deformed system.
In general, for a bi-Hamiltonian system

OH, OH,
e, = By(—5) = By(75") (6)

where B; and By are the standard Hamiltonian operators.



KdV6 equation

The Kupershmidt deformation of the bi-Hamiltonian system (6) is
constructed as follows

5Hn+1
ou

B(w) = 0. (7)

ug, = B]_(

n

) - Bl(w)7

This deformation is conjectured to preserve integrability and the
conjecture is verified in a few representative cases(Kupershmidt,
2008)

m We show that the KdV6 equation is equivalent to the
Rosochatius deformation of KdV equation with self-consistent
sources. We also give the t-type bi-Hamiltonian formalism of
KdV6 equation and some new solutions.



The generalized Kupershmidt deformed KdV hierarchy

The KdV hierarchy read

oH oH
T T

where
Bi = 0 =0y, By =08 +2(ud + du)
— 2 n _ 1 2 1 -1
Hop1 = 2n+1L u, L= 48 u+28 Uy.
For N distinct real A;, consider the spectral problem

SOJXX+(U_)\j)(pj:07./:17277N

It is easy to find that
0 _ 2

su _ Yir



The generalized Kupershmidt deformed KdV hierarchy

We generalize Kupershmidt deformation of KdV hierarchy

5H N
o n+1 )
ue, = Bi(—5 =) = Bl(;%)a (9a)
J:

Since wj is at the same position as 5’;—"““, it is reasonable to take
O
Wi = Su-



The generalized Kupershmidt deformed KdV hierarchy

So the generalized Kupershmidt deformation for a bi-Hamiltonian
systems is proposed as follows

_ OHp 5
ue, = Bi(—5, = = > Su ) (10a)
5 .



The generalized Kupershmidt deformed KdV hierarchy

From (10b), we can obtain

L
P+ (U= N)p; = 3,
?j
where pij, j=1,2,--- N are integrable constants.

When n = 2, (10) gives rise to the generalized Kupershmidt

deformed KdV equation

N

1 2
Uy = Z(UXXX + 6uuy) — Z(goj )xs (11a)
Jj=1
@jxx+(u—Aj)<pj:%,j:1,2,---,N (11b)

J

which is just the Rosochatius deformation of KdV equation with
self-consistent sources.



The generalized Kupershmidt deformed KdV hierarchy

The Lax pair is

;>X:U<$)’ U:<A2u (1)> (12a)




e generalized

equation

The Camassa-Holm (CH) equation read

oH, dHo

Blé —825

= =2uym—umy, m=u—Uxy+w (13)

where
Bi=—-0+8% B,=md+0m

1 1
HO = E /(U2 —+ U)2<)dX, H]_ = 5 /(IJ3 -+ UU)2<)CIX.



equation

We have

The generalized Kupershmidt deformed CH equation is constructed
as follows

N
oH; 10X
M= B T L ) T umx+Z[ = ()eusl
(14a)
10X .
(B2_>\_Bl)()\_5_)_07 ./_1727 7N (14b)



equation

Hi
L.
“j

(14b) gives i = 75 — 3MAipj +

So Eq.(14) gives the Kupershmidt deformed Camassa-Holm equation

N

me = —2uem — umy + Y _[(7)x = (] )], (15a)
j=1
1 1 Wi
@jxxzz¢j—§mxj¢j+;§7 j=12,-,N (15b)

which is called as the RD-CHESCS. Eq.(15) has the lax pair
2 _ (1 _ 0 1
(5) () v=(1n o) e)
U1 o Y1
(), =v(%)

u; 1 N oy —2

b -1 A\ PiPix ¢

_ 2 by u _ \Jj . J
V‘(%——Urm — % > Z,\Aj(sOfXJr“’z —%%)




deformed Boussinesq

equation

The Boussinesq equation is

dH> OH,
v o o 2w

=B ov =B v = X s
< )t 1 ( oH, > 2 ( 7{?:/1 > ( _%VVX - %Wxxx >

w ow
(17)
where
0 9
Bl — 5
0 0
B — 1 20% 4 2vd + vy 3w + 2wy 3
73 3w+ wy  —1(0° +5v0® + P vd® + Jvid + 420 + v + 4vik)

are the two standard Hamiltonian operators of the Boussinesq

equation and

Hy = / wdx, Hp = /(12VX - fv + w?)dx.



deformed Boussinesq

equation
From the following spectral problem and its adjoint spectral problem

1
Piox T VPjx + (2 Vx + W) )‘Qajv (183)

* * 1 * * M
@jxxx + V(pjx + (EVX - W)QOJ = _)\ij; J = 1727' o aN- (18b)

we have
0N

3 Y,
Sv 2(%@, sojsojx) = 3pjp;.

The generalized Kupershmidt deformed Boussinesq equation

v Sty N [0
(W) :Bl((ﬂ) Z(é%)’ (19a)
t ow j=1 Sw
Y
(32—A31)<oéjvj):o,jzl,z,--.,N. (19b)
ow



deformed Boussinesq

equation

By the complicated computation, from (19) we obtain

the generalized Kupershmidt deformed Boussinesq equation

N
o= By (202)
J=1
1 3 * *
W = _6(4VVX + VXXX) - E(Sojxxsoj - SDjoxx): (2Ob)
1
Piox T VQjx + (§Vx + W)on = \j®¥j, (20C)

Phoox T VPjx + (EVX —w)pi ==X, j=1,2,--- N (20d)

which just is the Boussinesq equation with self-consistent sources.



deformed Boussinesq
equation

Lax representation

N
2 1
e =187 4 3Vt Zlgoja lgpj, L] (21a)
J:
Lp = (8 +vd + %vx + w)tp = \p, (21b)

N
2
Y= (% + v+ )00 ). (21c)
j=1



equation

The JM hierarchy is

q b+2 5'}’n+1 %ﬂ
—B " =B q =B
(7)o ()=o) -o( &

s _ (0 20 o (20 0
1=\ 20 —ge—290 )" 2"\ 0 rX—|—2r8—%83 '

bn+2 _ bn+1 _
<bn+1>_L< e ),n_1,2,

1
= m(zbn-ﬂ - qbn+1)-



equation

Similarly, the generalized Kupershmidt deformed JM hierarchy is
constructed as follows

q 5Hn+1 N &
( 7 ) — Bl(< S >+Z< 3 )), (22a)
th or | W

Jj=1
(2]
or

(22b) leads to

902jx=(—)\12+>\jQ+f)901j+(%, Jj=12-- N.
1



e generalized
equation

Then Eqs.(22) with n = 3 gives rise to the generalized
Kupershmidt deformed JM equation

N
3

G = —rx — 590 + 2; $1j$2j (23a)

J:
1 1 6 1
fe = Qo = Gxr = 3qnc+ > 20\ — @i — 5%0%1]7
j=1
(23b)

P1ix = P2j, Paix = (AT + Ajg+ r)ey + g—éj =12,---,N
1
(23c)

which just is the RD-JMESCS



equation

Eq.(23) has the Lax representation (12a) with

0 1
U_<—/\2+)\q+r O>’

< %qx —A = %q >

N = 3N = (39 + A+ 300 — 3Gr 30

STR, ]
2 A(q)l, ¢1> — </\¢17 ¢1> — q<¢1,¢1> 0

N 2
1 1 P1jP2j —93;
P ey ( N
J=1

V =

Ly



equation

Denote the inner product in RN by (.,.) and

;= (i, iz, soin) T, =12, p="(p1,,pn)", N=diag(A, -, A

Eq.(23) can be written as

1 3 5 .3 1
q 30x — 29r — 169 +7</\¢17¢1> >
- B 8 z 16 2 2423
(1) =a (o™ e (242)
1
Plix = P2j, P2jx = —Afeo1j+q>\j¢1j+f<ﬁ1j+ 907; (24b)
1

Notices that Kernel of By is (c1 + 2qc, c2) T, we may rewrite (24a) as

1 3 5 4 1 1 1 3, 1
G — @ (AP O = Sge — T ZqR (P10 = c
8q 4qr 16q +2< 1, P1) Cl+2qC2 2f 8q +2<1 1)=c
(25a)
1 1 1
cie = 50(r + 76°), Cx = 50:q. (25b)



equation

By introducing g1 = q, p1 = _%qX7

Egs. (24b) and (25b) give rise to the t-type Hamiltonian form

5F
Ri = Gi—= 5R’ (26a)

where
R = (d)irv qi, ¢;—7p17 c, CZ)T,

1 1 3 1
Fi=—4pi — —ql - g+ qa—c + gqf<<|>1,<|>1> _ §q1<A¢1,¢1>

16 2
1 1 u -
+ — (D2, ) + </\ &1, 1) + oo (D1, 1) — Z MJ
2 j=1 =il Lle
(26b)
and the t — type Hamiltonian operator G is given by
0 Iniyxveyy 0 0
| vy v 0 0 0
G = 0 0 0 1o (26<)
0 0 0. 0



e generalized
equation

The Rosochatius deformation of MJM equation with
self-consistent sources (RD-MJMSCS) is defined as

7 5 OF2 0N —38x = GF + (91, 82) )
. =B — + — =B . 2 . . b -
<q)t i 1( —3P2 — 35 + 3R+ 5(01, 61)
(27a)
= 5.5 = = = == o K
Puix = —FP1j + NiPaj, Pojx = —AjP1j + 4Py + 7Paj + 13
JT1y
(27b)



equation

Since the Kernel of B is (&1,&)7, let

1, - = - 1, 3., 1. 1, = -
— A< — [ 7¢ - y T A ~ a A x ~ ¢7¢ = )
SO =GP (P, Bo) =&, = SF = 2 + SR+ S (P, 01) =&
~ s 1. = ST . AT o a o
qi=gq, pr = —5 9 R = (q)ira qi, ¢;7p17 C1, C2)T7

then RD-MJMSCS (27) can be written as a t-type Hamiltonian system

3

. . 0F
Ry = Gi—= 28a
=E (28a)
- o 1. . 1. -
Fi = —2p1& + §1& + 2p76 + gqf + 2p1 (D1, Do) — EQ1<¢‘1,¢'1>
1 1 N
5 (B2, &2) + — (N1, &) L 28b
L (NB2,5) + +> s (28)
0 I(N+1)><(N+1) 0 0
= | =l x v 0 0 0
G= 0 0 20, 0 (28¢<)
0 0 0 1o



e generalized

equation

The Miura map relating systems (26) and (28), i.e. R = M(R), is

given by
®1 =By, Py =AD, + 25Dy, (29a)
1 1~ - 1
=G, pr=—cgip1— = (B1, By) + ¢ 2
g1 =G, 1= —5&b = 5 (61, P2) + S, (29b)
1.
c = §F1 + O0tp1, € = o (29C)
Denote
w = PR
DRT

where DDI-{’?T is the Jacobi matrix consisting of Frechet derivative of
M, M* denotes adjoint of M’



0 0 AN —ltog 1o, 0
0 0 20/ _1%‘71 —4p; — O 0
PR A 2, 0 AU 835 0
=MGM* = 4
G =M& o] la -2 1o @ 0
*%q);— 4p1 — O —&35 —845 855 Orqn
0 0 0 0 q10: 20;
(30)
where
1 2 pn
835 = 2611/\4’1 /\ ®; — *Chq’l - b+ - <1>1<<|>17 1) + ( R
8 lj SDIN
1 3
gis=—za+t; </\¢17¢1> - §q1<¢1,¢1) + qlc2 + 8q1
1 1 1
gs5 = 8t(z<¢1,¢1> — 562) + (Z<¢1’ b)) — Ecz)at - ZQ13tq1.

Thus we get the bi-Hamiltonian structure for Eq.(26a)-(26c¢)

Rx = G1 5 G2 5R, Fo = 2C1. (31)



Thank  you
for your attention!
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